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Two-dimensional lattice Boltzmann model for magnetohydrodynamics

Werner Schaffenberger and Arnold Hanslmeier
Institute for Geophysics, Astrophysics, and Meterology, Universita¨tsplatz 5, A-8010 Graz, Austria

~Received 28 May 2002; published 9 October 2002!

We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic~MHD!
flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square
lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD
used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In
our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the
resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow,
giving reasonable results.
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I. INTRODUCTION

During the last years, the lattice Boltzmann equat
~LBE! method evolved to an alternative method for the sim
lation of fluid flows@1,2#. It originated from a Boolean fluid
model, the so-called lattice-gas automata~LGA! @3,4#. LGA
simulate fluids directly as a system of discrete particles m
ing on a regular lattice. The particles move from a lattice c
to one of its nearest neighbors. The particles undergo c
sions at the lattice cells conserving mass and moment
The macroscopic fluid variables such as density and fl
speed are calculated by averaging over many lattice cells
time steps. A successful LGA model was the FHP gas, in
duced by Frisch, Hasslacher, and Pomeau@5#. It uses a hex-
agonal lattice with six particle speeds. However, LGA ha
some shortcomings such as the lack of Galilean invaria
and statistical noise. Instead of following the dynamics
individual particles, lattice Boltzmann methods use t
single-particle distribution function which removes the s
tistical noise@6#.

Shortly after the FHP gas, the first magnetohydrodyna
LGA was developed by Montgomery and Doolen@7,8#. Their
model is an extension of the original FHP gas. It includ
additional degrees of freedom of the particles for the vec
potential which has only one component in two dimensio
and satisfies a passive scalar equation similar to the temp
ture. Therefore, the model is confined to two dimensio
Additionally, the Lorentz force is not included automatica
in the model. It must be included by hand as an exter
force which needs some space averages.

Another magnetohydrodynamic model was developed
Chen and Matthaeus and Chen, Matthaeus, and Klein@9,10#.
In this model, a two-indexed particle distribution is use
Each state is associated with two velocity vectors of the F
gas, i.e., there are 36 different states for the particles. Du
the streaming step, each particle moves along one of the
vectors which is chosen randomly. This model includes
Lorentz force by pure local operations and it is not confin
to two dimensions.

This model has been extended to a lattice Boltzma
model by Chenet al. @11,12#. Although the model is not
confined to two dimensions, its extension to three dim
sions would require a large amount of computatio
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memory. ForN moving directions, this model needsN3N
particle states. For example, the face-centered-hyperc
~FCHC! model has 24 different particle speeds resulting in
least 576 particle states for a MHD model.

Martinez, Chen, and Matthaeus@13# reduced the numbe
of necessary particle states from 37 to 13 in the tw
dimensional case. This reduction makes a three-dimensi
extension of the model possible. They applied the mode
the Hartmann flow and two-dimensional magnetic reconn
tion in a sheet pinch. The comparison with a spectral met
shows reasonable results. However, the main difficulty
this model is that it is confined to low-Reynolds numbe
because the values of the transport coefficients at the stab
threshold are finite. This is caused by the use of the bidir
tional streaming rule. The transport coefficients of hydrod
namic lattice Boltzmann models vanish at the stabil
threshold, allowing, in principal, arbitrary high-Reynold
numbers.

Some other lattice Boltzmann models for MHD have be
developed. Succi, Vergasola, and Benzi@14# developed a
model which is a two-dimensional projection of the fou
dimensional FCHC model. It is also confined to two dime
sions. Fogaccia, Benzi, and Romanelli@15# presented a Lat-
tice Boltzmann model for the simulation of three
dimensional plasma turbulence.

In this paper, we demonstrate that the use of the bidir
tional streaming rule is not necessary for a MHD model.
Sec. II, the model is described in detail and the model eq
tions are derived. In Sec. III, we present the test simulati
of the Hartmann flow and in Sec. IV we give the concl
sions. Finally, in Appendix A, we present some tensorial
lations used for the derivation of the model equations and
Appendix B, we calculate the inverse of the collision matr

II. MHD MODEL

A. Lattice Boltzmann equation

The lattice Boltzmann equation describes the evolution
the particle distribution functionf i

f i~x1vi ,t11!2 f i~x,t !5V i , ~1!

wherex are the lattice cells,t is the discret time,v i are the
©2002 The American Physical Society02-1
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velocities associated with the distribution functionf i , and
V i is the collision term. The densityr and the velocityv are
obtained from the distribution function by

r5(
i

f i , ~2!

rv5(
i

f ivi . ~3!

For LBE, the Bathnagar-Gross-Krook~BGK! @16# single
time relaxation ansatz is often used for the collision te
@17,18#

V i52 1
t ~ f i2 f i

eq!, ~4!

wheref i
eq is the equilibrium distribution function. It depend

on the lattice and it is usually not uniquely defined. F
square and cubic lattices, the distribution function has
form @18#

f i
eq5wir@113viv1 9

2 ~viv!22 3
2 v2#. ~5!

wi is a function ofuvi u and depends on the number of veloc
ties included in the model. For two-dimensional simulatio
on a square lattice, a model with nine velocities, the
called D2Q9 model is often used. The model includes f
componentsf i , i 51,...,4 with velocitiesvi pointing to the
nearest neighbors, four componentsf i , i 55,...,8 with ve-
locitiesvi pointing to the next-nearest lattice cells and a co
ponentf 0 for rest particles with zero speed. The values ofwi
are 4/9, 1/9, and 1/36 foruvi u equal to 0, 1, and&.

B. General description of a MHD model

In addition to their model on a hexagonal lattice, Ma
tinez, Chen, and Matthaeus@13# presented a MHD model on
a square lattice. Our model is very similar to their mod
except that our model does not use the bidirectional stre
ing. It is an extension of the D2Q9 model described in
previous section. Following Martinez, Chen and Matthae
@13#, we divide the nine velocities and corresponding co
ponents of the particle distribution function of the D2Q
model into three groups. The first group contains the com
nent f 0 with zero speed. The second group contains
four velocities pointing to the nearest neighbors which
now labeled as vi

I , i 51,...,4 with vi
I5„cos(i21)p/2,

sin(i21)p/2…. The last group contains the velocitiesvi
II , i

51,...,4 pointing to the next-nearest neighbors withvi
II

5&„(cos(i21/2)p/2, sin(i21/2)p/2…. The components o
the particle distribution function in the second and th
groups are divided into two subcomponentsf i j

K where K
5I, II, i 51,...,4, andj 5 i 61 ~mod 4!. There are now 17
components of the particle distribution function: a distrib
tion of rest particlesf 0 and a streaming partf i j

K . Each com-
ponent of the streaming partf i j

K is associated with two vec
tors vi

K and vj
K where the componentf i j

K of the particle
distribution function propagates alongvi

K . The densityr, the
velocity v, and the magnetic-fieldB are defined as
04670
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r5 f 01 (
i , j ,K

f i j
K , ~6!

rv5 (
i , j ,K

vi
K f i j

K , ~7!

B5 (
i , j ,K

vj
K f i j

K . ~8!

Because we use the standard streaming rule with propaga
alongv i

K , the streaming part of the particle distribution fun
tion f i j

K satisfies the lattice Boltzman equation

f i j
K~x1vi

K ,t11!2 f i j
K~x,t !5V i j

K . ~9!

For the nonstreaming partf 0 of the distribution function we
have the equation

f 0~x,t11!2 f 0~x,t !5V0 . ~10!

Instead of the BGK collision term, we use a matrix collisio
operator

V i j
K52 1

t ~ f i j
K2 f i j

K~eq!!1uMi jmn
KK8 ~ f mn

K8 2 f mn
K8~eq!! ~11!

V052 1
t ~ f 02 f 0

~eq!!. ~12!

The matrixMi jmn
KK8 is given by

Mi jmn
KK8 5Tabgdv ia

K v j b
K vmg

K8 vnd
K8 . ~13!

The tensorTabgd has the form

Tabgd52 1
32 dabdgd1 3

20 dagdbd1 1
10 daddbg2 3

16 dabgd ,
~14!

wheredab is the Kronecker delta anddabgd51 only if a
5b5g5d otherwise it is 0. Roman indices label the com
ponents of the particle distribution function and Greek in
ces label the spatial dimensions. For the latter, the Eins
summation convention is used. The matrix collision opera
allows an independent control over the viscosity and the
sistivity.

The next step is the specification of the equilibrium d
tribution function f i j

eq in such a way that the model repro
duces the correct MHD equations. In addition it must
compatible with the definitions~6!–~8!. A possible form of
the equilibrium distribution function is

f 0
~eq!5w0@r~12 3

2 v2!2 3
8 B2#, ~15!

f i j
K~eq!5wK$r@113vi

Kv1 9
2 ~vi

Kv!22 3
2 v2#13vj

KB2 9
2 ~vi

KB!2

13B21 9
4 ~vj

K3vi
K!~B3v!%, ~16!

where the first term is the hydrodynamic part which has
same form as for the D2Q9 model and the weighting fact
arew054/9, wI51/18, andwII51/72.
2-2



ic

w

he
o

w

ve
o

r
x
sio

a-

-

s in

ion.

TWO-DIMENSIONAL LATTICE BOLTZMANN MODEL FOR . . . PHYSICAL REVIEW E 66, 046702 ~2002!
C. Model equations

Now, the model equations can be derived from the latt
Boltzmann Eq.~9! using a Chapman-Enskog expansion@4#.
First, we expand the left-hand side of Eq.~9! up to second
order in space and time

] t f i j
K~x,t !1v ib

K ]b f i j
K1 1

2 ] t
2f i j

K1v ib
K ]b

] f i j
K

]t

1 1
2 v ib

K v ig
K ]b]g f i j

K5V i j
K .

Next, we expand the particle distribution in a series of po
ers of a small parametere

f i j
K5 f i j

K~0!1e f i j
K~1!1¯ , ~17!

where f i j
K(0)5 f i j

K(eq) and the higher terms ine are the depar-
ture from the local equilibrium. These higher terms of t
particle distribution function do not contribute to the macr
scopic variables such as density and momentum, i.e.,

f 0
~1!1 (

i , j ,K
f i j

K~1!50, ~18!

(
i , j ,K

vi
K f i j

K~1!50, ~19!

(
i , j ,K

vj
K f i j

K~1!50. ~20!

The time and space derivations are also expanded in po
of e,

] t5e] t11e2] t2 , ~21!

]b5e]b1 . ~22!

t1 captures the fast changes, for example, sound wa
whereast2 is associated with the slower dissipative pr
cesses. Inserting the expansions~17!, ~21!, and~22! into Eq.
~17! we get up to first order ine

] t1f i j
K~0!1v ib

K ]b f i j
K~0!5Ai jmn

KK8 f mn
K8~1! , ~23!

where we introduced the collision matrix

Ai jmn
KK8 52 1

t d imd jndKK81uMi jmn
KK8 . ~24!

Multiplying Eq. ~23! with 1, v ia , andv j a and summing over
i, j, andK one gets

] t1r1]b1~rvb!50, ~25!

] t1~rv ia!1]b1Pab
~0!50, ~26!

] t1Ba1]b1Lab
~0!50, ~27!

wherePab
(0)5S i , j ,K f i j

K(0)v ia
K v ib

K is the momentum flux tenso
andLab

(0)5S i , j ,K f i j
K(0)v j a

K v ib
K is the magnetic momentum flu

tensor. The right-hand sides vanish because the colli
04670
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term conserves the macroscopic variables. Unsing Eq.~16!
for the equilibrium distribution function and the tensor rel
tions of Appendix A, we get

Pab
~0!5 1

3 rdab1rvavb1 1
2 B2dab2BaBb , ~28!

Lab
~0!5Bavb2Bbva . ~29!

Up to first order ine we get the following equations:

]r

]t
1“•~rv!50, ~30!

rF]v

]t
1~v•“ !vG52“S p1

B2

2 D1~B•“ !B1B~“•B!,

~31!

]B

]t
5“3~v3B!, ~32!

with the equation of statep5r/3. To get the dissipative ef
fects, we have to consider the second-order terms

] t2f i j
K~0!1 1

2 ] t1
2 f i j

K~0!1] t1v ib
K ]b1f i j

K~0! 1
2 v ib

K v ig
K ]b1]g1f i j

K~0!

1] t1f i j
K~1!1v ib

K ]b1f i j
K~1!5Ai jmn

KK8 f mn
K8~2! . ~33!

First, we calculate the change of the density] t2r due to
dissipative processes. Summing over the velocity state
Eq. ~33! we get

] t2r1 1
2 ] t1@] t1r1]b1~rvb!#1 1

2 ]b1~] t1~rvb!1]g1Pbg
~0!!

1] t1 (
i , j ,K

f i j
K~1!1]b1 (

i , j ,K
vb f i j

K~1!50. ~34!

Using Eqs.~25!–~27! and Eqs.~18–20! we get

] t2r50. ~35!

There are no second-order terms in the continuity equat
Next, we calculate] t2(rva). Multiplying Eq. ~33! by v ia
and summing over the velocity states, we get

] t2~rva!1 1
2 ] t1~] t1~rva!1]b1Pab

~0!!

1 1
2 ]b1S ] t1Pab

~0!1]g1 (
i , j ,K

v ia
K v ib

K v ig
K f i j

K~0!D
1] t1 (

i , j ,K
v ia f i j

K~1!1]b1 (
i , j ,K

v ia
K v ib

K f i j
K~1!50.

~36!

Again using Eqs.~25!–~27! and Eqs.~18–20! this becomes

] t2~rva!52 1
2 ]b1S ] t1Pab

~0!1]g1 (
i , j ,K

v ia
K v ib

K v ig
K f i j

K~0!D
2]b1 (

i , j ,K
v ia

K v ib
K f i j

K~1! . ~37!
2-3
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We calculatef i j
K(1) from Eq. ~23! using the inverse collision

matrix of Appendix B and get

f i j
K~1!52t~] t1f i j

K~0!1v ib]b1f i j
K~0!!

1
ut2

ut21
Mi jmn

KK8 ~] t1f mn
K8~0!1vmb]b1f mn

K8~0!!. ~38!

Inserting this into Eq.~37! we get

] t2~rva!5]b1H ~t2 1
2 !S ] t1Pab

~0!1]g1 (
i , j ,K

v ia
K v ib

K v ig
K f i j

K~0!8D
1

ut2

12ut
v ia

K v ib
K Mi jmn

KK8 ~] t1f mn
K8~0!

1]g1vmg
K8 f mn

K8~0!!J . ~39!

Using the tensor relations of Appendix A, we see that ther
no contribution to the dissipative term of the momentu

equation due to the matrixMi jmn
K-K8 and the other terms reduc

to

] t2~rva!5 1
3 ~t2 1

2 !]b1@]a1~rvb!1]b1~rva!#. ~40!

A similar calculation gives the dissipative term in the indu
tion equation

] t2Ba5S t2
1

2
1

ut2

12ut D ]b1S ]b1Ba2
2

3
]a1BbD . ~41!

Using Eqs.~21! and ~22! we combine the first- and second
order terms to the following equations in vector form:

]r

]t
1“•~rv!50, ~42!

rF v

]t
1~v•“ !vG52“S p1

B2

2 D1~B•“ !B1B~“•B!

1 1
3 @~t2 1

2 !~Drv1“~“•rv!!#, ~43!

]B

]t
5“3~v3B!1S t2

1

2
1

ut2

12ut D ~DB2 2
3“~“•B!!.

~44!

This set of equations does not include the divergence-
condition of the magnetic field. Building the divergence
the induction equation, we see that the divergence of
magnetic field satisfies a diffusion equation

]“•B

]t
5

1

3 S t2
1

2
1

ut2

12ut DD“•B. ~45!

The solenoidal part of the magnetic field diffuses away. If
magnetic field is divergence free at the beginning, it is div
gence free for all time, i.e., the divergence-free condition
be added to the model as an initial condition. If the flo
speed is small compared to the speed of soundcs51/), the
04670
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fluid can be treated as incompressible. Additionally, the m
netic field must be small enough that the magnetic press
is negligible. For an incompressible fluid and a divergen
free magnetic field,

“•v50, ~46!

“•B50, ~47!

the model equations simplify to

]v

]t
1~v•“ !v52

1

r
“S p1

B2

2 D1 1
r ~B•“ !B1nDv,

~48!

]B

]t
5“3~v3B!1mDB, ~49!

wheren is the kinematic viscosity andm is the resistivity.
The values of the transport coefficients are

n5 1
3 ~t2 1

2 !, ~50!

m5t2
1

2
1

ut2

12ut
. ~51!

They can be controlled independently by the parametet
andu. There is no lower bound of the transport coefficien
because they vanish at the stability thresholdt51/2 as in the
hydrodynamic model foru50.

III. HARTMANN FLOW

Next, we apply our model to a very simple MHD prob
lem, the Hartmann flow@19#. This is the stationary flow of an
incompressible, conductive fluid between two plates. B
tween the two plates, there is a homogenous magnetic
perpendicular to them. The direction of the initial magne
field is chosen as they axis. We assume that the velocity o
the fluid has only one component along thex-axis v
5(vx,0,0). The two plates are located aty5L and y5
2L. The flow produces an additional magnetic field. Th
field also has only anx component. The total magnetic fiel
is B5(Bx ,B0,0), whereB0 is the constant strength of th
initial magnetic field. From the continuity equation and t
divergence-free condition of the magnetic field we g
]vx /]x50 and]Bx /]x50. Therefore, the nonlinear term
in the Navier-Stokes equation reduce to (v•“)v50 and (B
•“)B5(B0]Bx /]y,0,0). They component and thez com-
ponent of the Navier-Stokes equation reduce to

]

]y S p1
B2

2 D50, ~52!

]

]z S p1
B2

2 D50. ~53!

p1B2/2 depends only onx. Thex component of the Navier-
Stokes equation is
2-4
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1

r

]

]x S p1
B2

2 D5
B0

r

]Bx

]y
1nS ]2vx

]y2 1
]2vx

]z2 D . ~54!

Because the left-hand side depends only onx and the right-
hand side depends only ony andz, both sides of the equatio
must be constant. We set this constant equal
(1/r)]/]x(p1B2/2)52g. This pressure gradient drives th
flow. The nonlinear term in the induction equation reduces
“3(v3B)5(B0]vx /]y,0,0). Thex component of the in-
duction equation is

B0

]vx

]y
1mS ]2Bx

]y2 1
]2Bx

]z2 D50. ~55!

Assuming that all variables depend only ony, these equa-
tions reduce to the linear ordinary differential equations

B0

r

dBx

dy
1n

d2vy

dy2 52g, ~56!

B0

dvx

dy
1m

d2Bx

dy2 50. ~57!

The velocity and thex component of the magnetic field van
ish at the plates

vx~y!50 at y56L, ~58!

Bx~y!50 at y56L. ~59!

The solution of Eqs.~56! and~57! with the Boundary condi-
tions ~58! and ~59! is

Bx~y!5
rgL

B0
Fsinh~Hy/L !

sinhH
2

y

LG , ~60!

vx~y!5Arm

n

gL

B0
coshHF12

cosh~Hy/L

coshH G , ~61!

whereH5B0L/Amnr is the Hartmann number which is th
ratio between the magnetic and the viscous forces. In
limit of zero Hartmann number~no external field! the solu-
tion reduces toBx50 andvx5(gL2/2n)(12y2/L2) which is
the parabolic velocity profile of the Poiseuille flow. For larg
Hartmann numbers, the velocity profile is flattened. The
locity is almost constant between the two plates except
thin boundary layer of thicknessd5L/H where the velocity
rises from zero to the constant valuev05Arm/n(gL/B0).

Now, we present the results of the test simulation. T
initial condition of the system was an equilibrium state w
constant densityr51 and an uniform magnetic-fieldB0 in
the y direction. The velocity and thex component of the
magnetic field was zero at the start of the simulation. T
boundary conditions were realized by the method of I
muro, Yoshino, and Ogino@20#, adopted for MHD. For the
unknown components of the particle distribution function
the boundary, an equilibrium distribution function with th
04670
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parametersr8, v8, andB8 is chosen. These parameters a
set such that the boundary conditions are fulfilled. The e
lution of the system was computed until a steady state
reached. To drive the flow, we used an external force inst
of a pressure gradient. The external force was realized
replacing v in the equilibrium distribution function at the
right-hand side of the lattice Boltzmann equation byv1tg,
whereg is the acceleration of the fluid due to the extern
force. For all simulations, we used an array of 5033 cells.
The other parameters are set tot50.6, u50, andg51026.
The Hartmann number was varied by changing the stren
of the constant vertical magnetic-fieldB0 . We simulated the
Hartmann flow forH50, 1, 2, 5, 10, and 20. Figure 1 show
the resulting velocity profiles and in Fig. 2, the correspon

FIG. 1. Velocity profilevx vs y/L for different Hartmann num-
bers: H50 ~diamonds!, H51 ~triangles!, H52 ~squares!, H55
~crosses!, H510 ~plus signs!, andH520 ~asterisks!. The solid lines
are the theoretical results.

FIG. 2. Horizontal magnetic-fieldBx vs y/L for different Hart-
mann numbers:H51 ~triangles!, H52 ~squares!, H55 ~crosses!,
H510 ~plus signs!, andH520 ~asterisks!. The solid lines are the
theoretical results.
2-5
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ing profiles of the horizontal magnetic-fieldBX are shown.
The lines are the analytic solutions~60! and~61!. The simu-
lation results are in good agreement with the analytical so
tions.

IV. CONCLUSIONS

In this paper, we presented a LBE model for tw
dimensional, incompressible MHD flows on a square latti
In contrast to earlier MHD models, it uses the stand
streaming rule. There is no need for using the bidirectio
streaming rule of the earlier LGA and LBE MHD model
The flexibility of the LBE method allows us to get the co
rect form of the induction equation by an appropriate cho
of the equilibrium distribution function only. The use of th
standard streaming rule removes the lower bounds of
transport coefficients which appeared in the model of M
tinez, Chen, and Matthaeus. Additionally, we extended
single time relaxation BGK collision term to a matrix coll
sion term allowing independent control of the transport
efficients.

We applied the model to the Hartmann flow. The mod
gives accurate results for different values of the Hartma
number and the transport coefficients. This demonstrates
the model shows the correct MHD behavior. The mo
should also be able to simulate highly turbulent MHD flow
As the other MHD models based on the lattice Boltzma
equation, the divergenceless property of the magnetic fie
not included in our model. However, this is not a real pro
lem, because this property can be added as an initial co
tion for the magnetic field. Although, the model reproduc
the Hartmann flow, future applications of the model on oth
more complicated MHD flows are needed to show its usa
ity. The extension of the model to three dimension is
progress.

APPENDIX A: SOME TENSOR RELATIONS

Here, we present the tensor relations@13# that have been
used for the derivation of the model equations in Sec. II
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i , j

v ia
K 5(

i , j
v j a

K 50, ~A1!

(
i , j

v ia
K v ib

K 5(
i , j

v j a
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K 52AKdab , ~A2!

(
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v ia
K v j b

K 50, ~A3!

(
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K v ib

K v ig
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K 50, ~A4!
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K 50, ~A5!
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(
i , j

v ia
K v ib

K v ig
K v id

K 5(
i , j

v j a
K v j b

K v j g
K v j d

K

52ZKDabgd12YKdabgd , ~A6!

(
i , j

v ia
K v ib

K v ig
K v j d

K 5(
i , j

v ia
K v j b

K v j g
K v j d

K 50, ~A7!

(
i , j

v ia
K v ib

K v j g
K v j d

K 5AK
2 dabdgd22ZKDabgd22YKdabgd ,

~A8!

whereDabgd5dabdgd1dagdbd1daddbg , dabgd51 only if
a5b5g5d, otherwise it is 0, andAI52, AII54, ZI50,
ZII54, YI52, YII528. With the above relations, one ca
calculate the lattice tensors including the weighting facto

(
i , j ,K

wKv ia
K v ib

K 5 1
3 dab , ~A9!

(
i , j ,K

wKv ia
K v ib

K v ig
K v id

K 5 1
9 dabgd , ~A10!

(
i , j ,K

wKv ia
K v ib

K v ig
K v j d

K 5 4
9 dabdgd2 1

9 Dabgd . ~A11!

APPENDIX B: INVERSION OF MATRIX COLLISION
OPERATOR

Our MHD model uses the following collision term:

V i j
K5Ai jmn

KK8 ~ f mn
K8 2 f mn

K8~eq!! ~B1!

with the collision matrix

Ai jmn
KK8 52 1

t d imd jndKK81uMi jmn
KK8 . ~B2!

The matrixMi jmn
KK8 is given by

Mi jmn
KK8 5Tabgdv ia

K v j b
K vmg

K8 vnd
K8 . ~B3!

The tensorTabgd is given by

Tabgd52 1
32 dabdgd1 3

20 dagdbd1 1
10 daddbg2 3

16 dabgd .
~B4!

Multiplying the collision term with 1,v i e
K , v j e

K , summing
over i,j,K and using the tensor relations of Appendix A, w
get

(
i , j ,K

V i j
K50, ~B5!

(
i , j ,K

V i j
Kvi

K50, ~B6!

(
i , j ,K

V i j
Kvj

K50. ~B7!
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The collision operator conserves mass, momentum, and
magnetic field. The calculation of the transport coefficie
requires the inversion of the collision matrix. This can eas

be done if the matrixMi jmn
KK8 satisfies

Mi jmn
KK8 5 (

k,l ,K9
Mi jkl

KK9Mklmn
K9K8 . ~B8!

This holds if the TensorTabgd has the property

Tabgd5UabezTezhuUhugd , ~B9!

where the tensorUabgd is defined as
Y

e

04670
he
s
y

Uabgd5 (
i , j ,K

v ia
K v j b

K v ig
K v j d

K

528dabdgd112dagdbd28daddbg112dabgd .

~B10!

This can be verified directly. Using Eq.~B8!, the inverse of
the collision matrix can be calculated to

~Ai jmn
KK8 !2152td imd jndKK81

ut2

ut21
Mi jmn

KK8 . ~B11!
, J.
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